题目内容
若a,b,c均为正数,且21ab+2bc+8ca≤12,证明:| 1 |
| a |
| 2 |
| b |
| 3 |
| c |
| 15 |
| 2 |
分析:令
=x,
=y,
=z,则21ab+2bc+8ca≤12,等价于2xyz≥2x+4y+7,可得2xy≥7,z≥
,再结合柯西不等式,即可得证.
| 1 |
| a |
| 2 |
| b |
| 3 |
| c |
| 2x+4y |
| 2xy-7 |
解答:证明:令
=x,
=y,
=z,则21ab+2bc+8ca≤12,等价于2xyz≥2x+4y+7,
∴2xy≥7,z≥
,
∴x+y+x≥x+y
=x+
+
+
≥x+
+2
,
由柯西不等式可得(1+
)(9+7)≥(3+
)2
∴x+y+x≥x+
+
(3+
)=
+x+
≥
,
即
+
+
≥
.
| 1 |
| a |
| 2 |
| b |
| 3 |
| c |
∴2xy≥7,z≥
| 2x+4y |
| 2xy-7 |
∴x+y+x≥x+y
| 2x+4y |
| 2xy-7 |
| 11 |
| 2x |
| 2xy-7 |
| 2x |
| 2(x2+7) |
| x(2xy-7) |
| 11 |
| 2x |
1+
|
由柯西不等式可得(1+
| 7 |
| x2 |
| 7 |
| x |
∴x+y+x≥x+
| 11 |
| 2x |
| 1 |
| 2 |
| 7 |
| x |
| 3 |
| 2 |
| 9 |
| x |
| 15 |
| 2 |
即
| 1 |
| a |
| 2 |
| b |
| 3 |
| c |
| 15 |
| 2 |
点评:本题考查不等式的证明,考查换元法,考查柯西不等式,考查学生分析解决问题的能力,属于难题.
练习册系列答案
相关题目