搜索
题目内容
设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x
3
,又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在
上的零点个数为
[ ]
A.5
B.6
C.7
D.8
试题答案
相关练习册答案
B
练习册系列答案
金博士一点全通系列答案
课时作业本吉林人民出版社系列答案
天天向上中考零距离教材新解系列答案
阳光互动绿色成长空间系列答案
星火英语Spark巅峰训练系列答案
名师点津随堂小测系列答案
好帮手阅读成长系列答案
超越训练系列答案
点石成金金牌每课通系列答案
68所名校图书毕业升学完全练考卷系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
设函数f(x)的定义域为R,若存在常数m>0,使|f(x)|≤m|x|对一切实数x均成立,则称f(x)为F函数.给出下列函数:
①f(x)=0;②f(x)=x
2
;③
f(x)=
2
(sinx+cosx)
;④
f(x)=
x
x
2
+x+1
;其中是F函数的序号为
①④
①④
.
设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x
3
-4x+3.有下列命题:
①
f(-
3
4
) <f(
15
2
)
;
②当x∈[-1,0]时f(x)=x
3
+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为( )
A.1个
B.2个
C.3个
D.4个
(2011•上海模拟)已知函数
f(x)=(
x
a
-1
)
2
+(
b
x
-1
)
2
,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2
m
-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k
2
,b=(k+c)
2
时,记f(x)=f
1
(x);当a=(k+c)
2
,b=(k+2c)
2
时,记f(x)=f
2
(x).
求证:
f
1
(x)+
f
2
(x)>
4
c
2
k(k+c)
.
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案