题目内容

已知向量
a
=(cosλθ,cos(10-λ)θ),
b
=(sin(10-λ)θ,sinλθ),λ、θ∈R.
(1)求|
a
|2
+|
b
|2
的值;
(2)若
a
b
,求θ;
(3)若θ=
π
20
,求证:
a
b
分析:(1)由向量的数量积的坐标表示可求|
a
|,|
b
|,代入即可求解
(2)由
a
b
,利用向量数量积的性质的坐标表示可得cosλθ•sin(10-λ)θ+cos(10-λ) θ•sinλθ=0,整理可求θ
(3)要证明
a
b
,根据向量平行的坐标表示,只要证明cosλθ•sinλθ-cos(10-λ) θ•sin[(10-λ) θ]=0即可
解答:解:(1)∵|
a
|=
cos2λθ+cos2(10-λ)θ
,|
b
|=
sin2(10-λ)θ+sin2λθ
(算1个得1分)
|
a
|2+|
b
|2=2,…(4分)
(2)∵
a
b

∴cosλθ•sin(10-λ)θ+cos(10-λ) θ•sinλθ=0
∴sin((10-λ) θ+λθ)=0,
∴sin10θ=0…(7分)
∴10θ=kπ,k∈Z,
∴θ=
10
,k∈Z…(9分)
(3)∵θ=
π
20
,cosλθ•sinλθ-cos(10-λ) θ•sin[(10-λ) θ]
=cos
λπ
20
•sin
λπ
20
-cos(
π
2
-
λπ
20
)•sin(
π
2
-
λπ
20

=cos
λπ
20
•sin
λπ
20
-sin
λπ
20
•cos
λπ
20
=0,
a
b
…..…..(14分)
点评:本题主要考查了 向量的数量积的性质的坐标表示及向量平行的坐标表示,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网