题目内容

10.已知sinθ-cosθ=-$\frac{\sqrt{5}}{2}$,求tanθ的值.

分析 由条件利用同角三角函数的基本关系,求得2sinθcosθ 的值,可得tanθ的值.

解答 解:∵sinθ-cosθ=-$\frac{\sqrt{5}}{2}$,平方求得2sinθcosθ=-$\frac{1}{4}$,∴tanθ<0,
$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=-$\frac{1}{4}$,求得tanθ=-4±$\sqrt{15}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网