题目内容
(本题满分14分)
已知数列
是等差数列,
;数列
的前n项和是
,且
.
(Ⅰ) 求数列
的通项公式;
(Ⅱ) 求证:数列
是等比数列;
(Ⅲ) 记
,求
的前n项和
.
解:(Ⅰ)设
的公差为
,则:
,
,
∵
,
,∴
,∴
. ………………………2分
∴
. …………………………………………4分
(Ⅱ)当
时,
,由
,得
. …………………5分
当
时,
,
,
∴
,即
. …………………………7分
∴
. ……………………………………………………………8分
∴
是以
为首项,
为公比的等比数列. …………………………………9分
(Ⅲ)由(2)可知:
. ……………………………10分
∴
. …………………………………11分
∴
.
∴
.
∴![]()
![]()
.
∴
. ……………………………………………………………14分
练习册系列答案
相关题目