搜索
题目内容
若
的图象关于原点对称,是a=________.
试题答案
相关练习册答案
分析:利用函数的图象关于原点对称,可得函数是奇函数,利用奇函数的定义,可求得结论.
解答:∵
的图象关于原点对称,
∴函数是奇函数,即f(-x)=-f(x)
∴
=-(
)
解得2a=1
∴a=
故答案为:
点评:本题考查函数的对称性,考查函数的奇偶性,考查学生的计算能力,属于基础题.
练习册系列答案
交大之星学业水平单元测试卷系列答案
快乐课堂系列答案
乐学课堂课时学讲练系列答案
期末金牌卷系列答案
轻松课堂标准练系列答案
全程畅优大考卷系列答案
淘金先锋课堂系列答案
整合集训随堂检测天天练系列答案
黄冈金牌之路单元期末卷系列答案
轻负高效系列答案
相关题目
已知函数f(x)=x
2
+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围.
设f(x)=log
1
2
1-ax
x-1
(a为常数)的图象关于原点对称
(1)求a的值;
(2)判断函数f(x)在区间(1,+∞)的单调性并证明;
(3)若对于区间[3,4]上的每一个x的值,f(x)>(
1
2
)
x
+m恒成立,求实数m的取值范围.
已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是
④
④
.?
若
的图象关于原点对称,是a=
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案