题目内容
甲、乙二射击运动员分别对一目标射击
次,甲射中的概率为
,乙射中的概率为
,求:
(1)
人都射中目标的概率;
(2)
人中恰有
人射中目标的概率;
(3)
人至少有
人射中目标的概率;
(4)
人至多有
人射中目标的概率?
(1)
(2)
(3)
(4)![]()
解析:
记“甲射击
次,击中目标”为事件
,“乙射击
次,击中目标”为事件
,则
与
,
与
,
与
,
与
为相互独立事件,
(1)
人都射中的概率为:
,
∴
人都射中目标的概率是
.
(2)“
人各射击
次,恰有
人射中目标”包括两种情况:一种是甲击中、乙未击中(事件
发生),另一种是甲未击中、乙击中(事件
发生)
根据题意,事件
与
互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:
![]()
![]()
∴
人中恰有
人射中目标的概率是
.
(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为
.
(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,
2个都未击中目标的概率是
,
∴“两人至少有1人击中目标”的概率为
.
(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,
故所求概率为:
![]()
![]()
.
(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,
故所求概率为![]()
![]()
(本小题满分12分)
甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
| 甲 | 5 | 6 | 9 | 10 |
| 乙 | 6 | 7 | 8 | 9 |
(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
(本小题满分12分)
甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
|
甲 |
5 |
6 |
9 |
10 |
|
乙 |
6 |
7 |
8 |
9 |
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
(本小题满分12分)
甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
|
甲 |
5 |
6 |
9 |
10 |
|
乙 |
6 |
7 |
8 |
9 |
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
(本小题满分12分)甲、乙二名射击运动员参加第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
|
甲 |
5 |
6 |
9 |
10 |
|
乙 |
6 |
7 |
8 |
9 |
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.