题目内容
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与圆(x-3)2+y2=9相交于A、B两点,若|AB|=2,则该双曲线的离心率为( )| A. | 8 | B. | 2$\sqrt{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
分析 求出双曲线的渐近线方程,利用圆的半径与半弦长,圆心到直线的距离满足的勾股定理求解即可.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线:bx-ay=0,圆(x-3)2+y2=9相交于A、B两点,圆的圆心(3,0),半径为3,圆心到直线的距离为:2$\sqrt{2}$,|AB|=2,
可得:$\frac{3b}{\sqrt{{a}^{2}+{b}^{2}}}=2\sqrt{2}$.解得b=2$\sqrt{2}$a.c=$\sqrt{{a}^{2}+{b}^{2}}$=3a.
双曲线的离心率为3.
故选:D.
点评 本题考查直线与圆的位置关系的综合应用,双曲线的离心率的求法,考查计算能力.
练习册系列答案
相关题目
10.
如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
7.设P是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,-b),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(O为坐标原点),则λ2+μ2的最小值为( )
| A. | $\frac{1}{4}$ab | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ab | D. | $\frac{1}{2}$ |
14.在△ABC中,∠A=60°,∠A的内角平分线AD将BC分成BD、DC两段,若向量$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+λ\overrightarrow{AC}(λ∈{R})$,则∠B=( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |