题目内容
已知数列{an}中,a1=
且对任意非零自然数n都有an+1=
an+(
)n+1.数列{bn}对任意非零自然数n都有bn=an+1-
an.
(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式.
| 5 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式.
(1)证明:bn=an+1-
an=[
an+(
)n+1]-
an=(
)n+1-
an,bn+1=(
)n+2-
an+1=(
)n+2-
[
an+(
)n+1]=
•(
)n+1-
an-
•(
)n+1=
•(
)n+1-
an=
•[(
)n+1-
an],
∴
=
(n=1,2,3,…).
∴{bn}是公比为
的等比数列.
(2)∵b1=(
)2-
a1=
-
•
=
,
∴bn=
•(
)n-1=(
)n+1.
由bn=(
)n+1-
an,得(
)n+1=(
)n+1-
an,解得an=6[(
)n+1-(
)n+1].
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 18 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 18 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
∴
| bn+1 |
| bn |
| 1 |
| 3 |
∴{bn}是公比为
| 1 |
| 3 |
(2)∵b1=(
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 6 |
| 5 |
| 6 |
| 1 |
| 9 |
∴bn=
| 1 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
由bn=(
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|