题目内容
已知二次函数
,满足:对任意实数
,都有
,且当
时,有
成立,又
,则
为( )
| A.1 | B. | C.2 | D.0 |
B.
解析试题分析:由条件对任意实数x,都有f(x)≥x,知f(2)≥2成立
∵当x∈(1,3)时,有
成立,
∴取x=2时,
成立,
∴f(2)=2.
∴4a+2b+c=2①
∵f(-2)=0
∴4a-2b+c=0②
由①②可得,∴4a+c=2b=1,
∴b=
,故选B.
考点:本题主要考查二次函数性质,方程组解法。
点评:典型题,对恒成立问题,可以任取自变量的值,式子均成立。本题紧紧围绕已知条件,通过
, f(2)=2得到方程组。
练习册系列答案
相关题目
当
时,幂函数
为减函数,则实数
( )
| A.m=2 | B.m=-1 | C.m=2或m=-1 | D. |
按复利计算,存入一笔
万元的三年定期存款,年利率为
,则
年后支取可获得利息为( )
| A. | B. |
| C. | D. |
已知
的单调递增区间为
,则实数a的取值范围是
| A. | B.(1,4) | C.(2,4) | D. |
设函数
,则满足
的
的值是( )
| A.2 | B.16 | C.2或16 | D.-2或16 |
已知![]()
恰有3个不同的零点,则实数
的取值范围是( )
| A. | B. | C. | D. |
函数f(x)=
(a>0,a≠1)的图象恒过定点( ).
| A. | B. | C. | D. |
二次函数
的图象的对称轴为
,则当
时,
的值为( )
| A. | B.1 | C.17 | D.25 |
对
,定义
,则函数
是( )
| A.奇函数但非偶函数; | B.偶函数但非奇函数; |
| C.既是奇函数又是偶函数; | D.非奇非偶函数 |