ÌâÄ¿ÄÚÈÝ
21.ÓÃË®ÇåÏ´Ò»¶ÑÊß²ËÉϲÐÁôµÄũҩ.¶ÔÓÃÒ»¶¨Á¿µÄË®ÇåÏ´Ò»´ÎµÄЧ¹û×÷Èçϼٶ¨£ºÓÃ1¸öµ¥Î»Á¿µÄË®¿ÉÏ´µôÊß²ËÉϲÐÁôũҩÁ¿µÄ(1)ÊԹ涨f(0)µÄÖµ£¬²¢½âÊÍÆäʵ¼ÊÒâÒ壻
(2)ÊÔ¸ù¾Ý¼Ù¶¨Ð´³öº¯Êýf(x)Ó¦¸ÃÂú×ãµÄÌõ¼þºÍ¾ßÓеÄÐÔÖÊ£»
(3)Éèf(x)=
£¬ÏÖÓÐa(a>0)µ¥Î»Á¿µÄË®£¬¿ÉÒÔÇåÏ´Ò»´Î£¬Ò²¿ÉÒÔ°Ñˮƽ¾ù·Ö³É2·ÝºóÇåÏ´Á½´Î£¬ÊÔÎÊÓÃÄÄÖÖ·½°¸ÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿±È½ÏÉÙ£¿ËµÃ÷ÀíÓÉ.
21.
£Û½â£Ý(1)f(0)=1±íʾûÓÐÓÃˮϴʱ£¬Êß²ËÉϵÄũҩÁ¿½«±£³ÖÔÑù.
(2)º¯Êýf(x)Ó¦¸ÃÂú×ãµÄÌõ¼þºÍ¾ßÓеÄÐÔÖÊÊÇ£º
f(0)=1£¬f(1)=
.
ÔÚ
ÉÏf(x)µ¥µ÷µÝ¼õ£¬ÇÒ0<f(x)¡Ü1.
(3)Éè½öÇåÏ´Ò»´Î£¬²ÐÁôµÄũҩÁ¿Îªf1=
.
ÇåÏ´Á½´Îºó£¬²ÐÁôµÄũҩÁ¿Îªf2=
=
.
Ôòf1£f2=![]()
=
.
ÓÚÊÇ£¬µ±a>2
ʱ£¬
;
µ±a=2
ʱ£¬f1=f2£»
µ±0<a<2
ʱ£¬f1<f2.
Òò´Ë£¬µ±a>2
ʱ£¬ÇåÏ´Á½´Îºó²ÐÁôµÄũҩÁ¿½ÏÉÙ£»
µ±a=2
ʱ£¬Á½ÖÖÇåÏ´·½·¨¾ßÓÐÏàͬµÄЧ¹û£»
µ±0<a<2
ʱ£¬Ò»´ÎÇåÏ´²ÐÁôµÄũҩÁ¿½ÏÉÙ.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿