题目内容
函数f(x)=
,数列{an}满足:an>0,a1=1,an+1=f(an),n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
+1,对任意正整数n,不等式
-
≤0恒成立,求正数k的取值范围.
| x |
| x+1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
| 2 |
| an |
| kn+1 | ||||||||
(1+
|
| kn | ||
|
分析:(Ⅰ)由已知,an+1=
,变形
-
=1,构造等差数列{
},通过{
}的通项公式求数列{an}的通项公式
(Ⅱ)由已知得k≤
,设cn=
考查cn的最小值,
由于cn无法化简,考虑通过其增减性求最小值.
| an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)由已知得k≤
(1+
| ||||||
|
(1+
| ||||||
|
由于cn无法化简,考虑通过其增减性求最小值.
解答:解:(Ⅰ)∵f(x)=
,∴an+1=
,∴
-
=1
∴数列{
}是首项
=1,公差d=1的等差数列,
=1+(n-1)=n
∴an=
.
(Ⅱ)由已知得k≤
设cn=
则
=
>1,所以数列{cn}递增,
∴cn的最小值为c1=
,
∴只需0<k≤
| x |
| x+1 |
| an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| an |
∴an=
| 1 |
| n |
(Ⅱ)由已知得k≤
(1+
| ||||||
|
设cn=
(1+
| ||||||
|
则
| cn+1 |
| cn |
| 2n+4 | ||||
|
∴cn的最小值为c1=
4
| ||
| 15 |
∴只需0<k≤
4
| ||
| 15 |
点评:本小题主要考查数列的通项公式求解,函数单调性的应用、数列与不等式的综合等基础知识,考查运算求解能力,考查方程思想、化归与转化思想.
练习册系列答案
相关题目