题目内容

2.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(3-x),且f(x)在[m,+∞)单调递增,则实数m的最小值为(  )
A.-2B.-1C.2D.1

分析 由f(x)的解析式便知f(x)关于x=a对称,而由f(1+x)=f(3-x)知f(x)关于x=2对称,从而得出a=2,这样便可得出f(x)的单调递增区间为[2,+∞),而f(x)在[m,+∞)上单调递增,从而便得出m的最小值为2.

解答 解:∵f(x)=2|x-a|
∴f(x)关于x=a对称;
又f(1+x)=f(3-x);
∴f(x)关于x=2对称;
∴a=2;
∴$f(x)={2}^{|x-2|}=\left\{\begin{array}{l}{{2}^{x-2}}&{x≥2}\\{{2}^{-x+2}}&{x<2}\end{array}\right.$;
∴f(x)的单调递增区间为[2,+∞);
又f(x)在[m,+∞)上单调递增;
∴实数m的最小值为2.
故选:C.

点评 考查函数图象的对称性,清楚f(x)=|x-a|的图象关于x=a对称,由f(x+a)=f(b-x)知f(x)关于直线x=$\frac{a+b}{2}$对称,以及指数函数和分段函数的单调性.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网