题目内容
为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )
![]()
A.
B.
C.
D.![]()
C
[解析] 根据频率分布直方图可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4,
设生产产品件数在[10,15)内的2人分别是A,B,设生产产品件数在[15,20)内的4人分别为C,D,E,F,
则从生产低于20件产品的工人中随机地选取2位工人的结果有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.
2位工人不在同一组的结果有
(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),共8种.
则选取这2人不在同一组的概率为
.
练习册系列答案
相关题目