题目内容
已知向量
=(cos
,-1),
=(
sin
,cos2
),设函数f(x)=
•
+
.
(1)若x∈[0,
],f(x)=
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA=2c-
a,求f(B)的值.
| m |
| x |
| 2 |
| n |
| 3 |
| x |
| 2 |
| x |
| 2 |
| m |
| n |
| 1 |
| 2 |
(1)若x∈[0,
| π |
| 2 |
| ||
| 3 |
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA=2c-
| 3 |
分析:(1)利用向量数量积运算,结合二倍角公式,化简函数,利用cosx=cos[(x-
)+
],即可求cosx的值;
(2)利用正弦定理,可得cosB=
,从而可求f(B)的值.
| π |
| 6 |
| π |
| 6 |
(2)利用正弦定理,可得cosB=
| ||
| 2 |
解答:解:(1)由题意,f(x)=
cos
sin
-cos2
+
=sin(x-
)
∵x∈[0,
],∴x-
∈[-
,
],
∵f(x)=
,∴sin(x-
)=
,∴cos(x-
)=
∴cosx=cos[(x-
)+
]=cos(x-
)cos
-sin(x-)
sin
=
-
(2)∵2bcosA=2c-
a,∴利用正弦定理,可得2sinBcosA=2sinC-
sinA=2sin(A+B)-
sinA,
∴cosB=
∵B∈(0,π)
∴B=
∴f(B)=sin(
-
)=0
| 3 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∵x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
∵f(x)=
| ||
| 3 |
| π |
| 6 |
| ||
| 3 |
| π |
| 6 |
| ||
| 3 |
∴cosx=cos[(x-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| ||
| 2 |
| ||
| 6 |
(2)∵2bcosA=2c-
| 3 |
| 3 |
| 3 |
∴cosB=
| ||
| 2 |
∵B∈(0,π)
∴B=
| π |
| 6 |
∴f(B)=sin(
| π |
| 6 |
| π |
| 6 |
点评:本题考查向量知识的运用,考查三角函数的化简,考查正弦定理的运用,属于中档题.
练习册系列答案
相关题目