题目内容
一个盒子里装有n-1个白球,1个红球,每次随机地取出一个球,若取到白球则放回再取,若取到红球则停止取球,则取球次数ξ的数学期望为__________________________.
解析:ξ可以取1,2,3,…,n,
P(ξ=k)=
(k=1,2,…,n),
∴Eξ=
(1+2+3+…+n)=
.
答案:![]()
练习册系列答案
相关题目
(本小题满分13分)
随机变量X的分布列如下表如示,若数列
是以
为首项,以
为公比的等比数列,则称随机变量X服从等比分布,记为Q(
,
).现随机变量X∽Q(
,2).
| X | 1 | 2 | … | n |
| … |
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变
(本小题满分13分)
随机变量X的分布列如下表如示,若数列
是以
为首项,以
为公比的等比数列,则称随机变量X服从等比分布,记为Q(
,
).现随机变量X∽Q(
,2).
|
X |
1 |
2 |
… |
n |
|
|
|
|
… |
|
(Ⅰ)求n 的值并求随机变量X的数学期望EX;
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.