题目内容

数列{an}满足a1,a2-a1,a3-a2,…,an-an-1是首项为1,公比为2的等比数列,那么an=( )
A.2n-1
B.2n-1-1
C.2n+1
D.4n-1
【答案】分析:an是等比数列{an-an-1}的前n项和,利用等比数列的前n项公式可得an
解答:解:an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1==2n-1
故选A.
点评:本题关键在于观察出所给等比数列,与an有什么关系,观察出来,此题迎刃而解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网