题目内容
已知直线与圆M:相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为 .
函数的单调递增区间为___________.
已知等比数列的各项均为正数,且,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
已知曲线C:y2=2x-4.
(1) 求曲线C在点A(3,)处的切线方程;
(2) 过原点O作直线l与曲线C交于A、B两不同点,求线段AB的中点M的轨迹方程.
在正三棱柱ABC-A1B1C1中,点D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.
已知函数是奇函数,当时,,且,则 .
选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程:
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
向量,则( )
A.1 B.-1 C.-6 D.6
已知集合.
(1)求;
(2)若求函数的最大值.