题目内容
已知函数f(x)=x2+ax+b,集合A={x|f(x)=0},B={x|f(x)=3x},空集∅.
(1)若函数f(x)为偶函数,且A≠∅,求实数b的取值范围;
(2)若B={a},求函数f(x)的解析式.
(1)若函数f(x)为偶函数,且A≠∅,求实数b的取值范围;
(2)若B={a},求函数f(x)的解析式.
分析:(1)利用f(x)=x2+ax+b是偶函数,可得a=0,由A≠∅,可得b的取值范围.
(2)若B={a},利用根与系数之间的关系进行求解.
(2)若B={a},利用根与系数之间的关系进行求解.
解答:解(1)∵f(x)=x2+ax+b为偶函数,∴f(-x)=f(x),
即x2-ax+b=x2+ax+b,
∴a=0.∴f(x)=x2+b.
∵A≠∅,即x2+b=0有实数根,
∴b≤0.
(2)∵B={a},∴由f(x)=3x,
得x2+(a-3)x+b=0
则方程有两个相等实根x1=x2=a,
∴
,得
,
∴f(x)=x2+x+1.
即x2-ax+b=x2+ax+b,
∴a=0.∴f(x)=x2+b.
∵A≠∅,即x2+b=0有实数根,
∴b≤0.
(2)∵B={a},∴由f(x)=3x,
得x2+(a-3)x+b=0
则方程有两个相等实根x1=x2=a,
∴
|
|
∴f(x)=x2+x+1.
点评:本题主要考查函数奇偶性的应用,以及一元二次方程根与判别式之间的关系的应用.比较综合.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|