题目内容
已知O,A,B是平面上不共线的三点,若点C满足
,则向量
等于
- A.

- B.

- C.

- D.

D
分析:由于 O,A,B是平面上不共线的三点,若点C满足
,可得C是AB 的中点,故
=
.
解答:∵O,A,B是平面上不共线的三点,若点C满足
,
∴C是AB 的中点,故
=
,
故选 D.
点评:本题考查两个向量的加减法的法则,以及其几何意义,判断C是AB 的中点,是解题的关键.
分析:由于 O,A,B是平面上不共线的三点,若点C满足
解答:∵O,A,B是平面上不共线的三点,若点C满足
∴C是AB 的中点,故
故选 D.
点评:本题考查两个向量的加减法的法则,以及其几何意义,判断C是AB 的中点,是解题的关键.
练习册系列答案
相关题目
已知O,A,B是平面上的三个点,直线AB上有一点C,满足2
+
=0,则
等于( )
| AC |
| CB |
| OC |
A、2
| ||||||||
B、-
| ||||||||
C、
| ||||||||
D、-
|