题目内容
已知数列{an}中,a1=| 1 |
| 2 |
| Sn+2Tn |
| n |
分析:(1)由于已知得:a1=
,2an+1=an+n,利用递推关系由于bn=an+1-an-1,利用等比数列的定义即可;
(2)由(1)知,bn=-
×(
)n-1=-
×(
)n,而又由于bn=an+1-an-1,利用数列的累加法可以得到数列{an}的通项公式,有其通项公式特点选择分组求和法代入相应公式即可求得,Sn、Tn,在利用等差数列的定义即可得证.
| 1 |
| 2 |
(2)由(1)知,bn=-
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
解答:解:(1)有已知得:a1=
,2an+1=an+n,
∴a2=
,则a2-a1-1=-
,
∴
=
=
=
=
,
∴数列{bn}是以-
为首项,以
为公比的等比数列;
(2)由(1)知,bn=-
×(
)n-1=-
×(
)n,
∴an+1-an-1=-
×
,
得:an-an-1=-
×
+1
a3-a2=-
×
+1
a2-a1=-
×
+1
将以上各式相加得:an-a1=-
(
+
+…+
)+(n-1),
∴an=a1+n-1-
×
=
+n-2,
∵Sn=a1+a2+…+an=3(
+
+…+
)+(1+2+…+n)-2n+(1+2+…+n)-2n=3×
+
-2n=-
+
+3
Tn=b1+b2+…+bn=
=-
+
,
∴
=
=
n-
,
∴
-
=
n-
-[
(n-1)-
]=
,
∴数列{
}是等差数列.
| 1 |
| 2 |
∴a2=
| 3 |
| 4 |
| 3 |
| 4 |
∴
| bn+1 |
| bn |
| an+2-an+1-1 |
| an+1-an-1 |
| ||||
| an+1-an |
| ||
| an+1-an-1 |
| 1 |
| 2 |
∴数列{bn}是以-
| 3 |
| 4 |
| 1 |
| 2 |
(2)由(1)知,bn=-
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴an+1-an-1=-
| 3 |
| 2 |
| 1 |
| 2n |
得:an-an-1=-
| 3 |
| 2 |
| 1 |
| 2n |
a3-a2=-
| 3 |
| 2 |
| 1 |
| 22 |
a2-a1=-
| 3 |
| 2 |
| 1 |
| 2 |
将以上各式相加得:an-a1=-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
∴an=a1+n-1-
| 3 |
| 2 |
| ||||
1-
|
| 3 |
| 2n |
∵Sn=a1+a2+…+an=3(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| ||||
1-
|
| n(n+1) |
| 2 |
| 3 |
| 2n |
| n2-3n |
| 2 |
Tn=b1+b2+…+bn=
-
| ||||
1-
|
| 3 |
| 2 |
| 3 |
| 2n+1 |
∴
| Sn+2Tn |
| n |
-
| ||||||||
| n |
| 1 |
| 2 |
| 3 |
| 2 |
∴
| Sn+2Tn |
| n |
| Sn-1+2Tn-1 |
| n-1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴数列{
| Sn+2Tn |
| n |
点评:此题考查了等差数列的定义,通项公式及数列的前n项和公式,累加法求数列的通项的方法,重在考查学生的基本的计算能力.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|