题目内容

(2013•朝阳区二模)如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PDEA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(Ⅰ)求证:FG平面PDE;
(Ⅱ)求证:平面FGH⊥平面AEB;
(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
精英家教网
(Ⅰ)证明:因为F,G分别为PB,BE的中点,所以FGPE.
又因为FG?平面PED,PE?平面PED,所以,FG平面PED.…(4分)
(Ⅱ)因为EA⊥平面ABCD,所以EA⊥CB.
又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE.
由已知F,H分别为线段PB,PC的中点,所以FHBC,则FH⊥平面ABE.
而FH?平面FGH,所以平面FGH⊥平面ABE.…(9分)
(Ⅲ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下:
在直角三角形AEB中,因为AE=1,AB=2,所以BE=
5

在直角梯形EADP中,因为AE=1,AD=PD=2,所以PE=
5

所以PE=BE.又因为F为PB的中点,所以EF⊥PB.
要使PB⊥平面EFM,只需使PB⊥FM.
因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,则△PFM△PCB,可得
PM
PB
=
PF
PC

由已知可求得PB=2
3
PF=
3
PC=2
2
,所以PM=
3
2
2
.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网