题目内容
已知f(x)=
,定义fn(x)=f(fn-1(x)),其中f1(x)=f(x),则f2011(
)=
.
|
| 1 |
| 5 |
| 7 |
| 10 |
| 7 |
| 10 |
分析:先根据条件求出其前几项,找到其规律即可得到结论.
解答:解;∵f1(x)=f(x),f(x)=
,fn(x)=f(fn-1(x)),
∴f1(
)=f(
)=
+
=
;
f2(
)=f(f1(
))=f(
)=2(1-
)=
,
f3(
)=f(f2(
))=f(
)=2(1-
)=
,
f4(
)=f(f3(
))=f(
)=2(1-
)=
,
f5(
)=f(f4(
))=f(
)=
+
=
,
f6(
)=f(f5(
))=f(
)=2(1-
)=
,
f7(
)=f(f6(
))=f(
)=
+
=
,
…
∴其周期为T=6
又2011=6×335+1
∴f2011(
)=f1(
)=
.
故答案为:
.
|
∴f1(
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
| 7 |
| 10 |
f2(
| 1 |
| 5 |
| 1 |
| 5 |
| 7 |
| 10 |
| 7 |
| 10 |
| 3 |
| 5 |
f3(
| 1 |
| 5 |
| 1 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
f4(
| 1 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 2 |
| 5 |
f5(
| 1 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 1 |
| 2 |
| 9 |
| 10 |
f6(
| 1 |
| 5 |
| 1 |
| 5 |
| 9 |
| 10 |
| 9 |
| 10 |
| 1 |
| 5 |
f7(
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
| 7 |
| 10 |
…
∴其周期为T=6
又2011=6×335+1
∴f2011(
| 1 |
| 5 |
| 1 |
| 5 |
| 7 |
| 10 |
故答案为:
| 7 |
| 10 |
点评:本题主要考察函数的迭代.解决本题的关键在于利用条件求出其周期.
练习册系列答案
相关题目
已知函数f(
-1)=-x,则函数f(x)的表达式为( )
| x |
| A、f(x)=x2+2x+1(x≥0) |
| B、f(x)=x2+2x+1(x≥-1) |
| C、f(x)=-x2-2x-1(x≥0) |
| D、f(x)=-x2-2x-1(x≥-1) |