题目内容

已知△ABC的面积S满足
3
≤S≤3
3
,且
AB
BC
=6

(1)求角B的取值范围;
(2)求函数f(B)=
1-
2
cos(2B-
π
4
)
sinB
的值域.
(1)
AB
BC
=|
AB
|•|
BC
|•cos(π-B)=6

S=
1
2
|
AB
|•|
BC
|•sinB
②;
由①、②得,S=-3tanB.
3
≤S≤3
3
可得,
3
3
≤-tanB≤
3

又0≤B≤π,
所以B∈[
3
,  
6
]

(2)f(B)=
1-
2
cos(2B-
π
4
)
sinB
=2
2
sin(B-
π
4
)

因为B∈[
3
,  
6
]

所以B-
π
4
∈[
12
12
]

B=
4
时,
f(B)取最大值2
2

B=
3
B=
6
时,
f(B)取最小值1+
3

综上,所求函数的值域为[1+
3
,2
2
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网