题目内容
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数,下列四个结论:
①函数f(x)=tanx(x≠kπ+
,k∈Z)是单函数;
②指数函数f(x)=2x(x∈R)是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数.
上述四个结论中正确的有______.(写出所有正确结论的序号)
①函数f(x)=tanx(x≠kπ+
| π |
| 2 |
②指数函数f(x)=2x(x∈R)是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数.
上述四个结论中正确的有______.(写出所有正确结论的序号)
①函数f(x)=tanx(x≠kπ+
,k∈Z)不是单函数,例如f(
)=f(
),显然不会有
和
相等,故为假命题;
②指数函数f(x)=2x(x∈R)是单函数,因为指数函数f(x)=2x(x∈R)是实数上的单调函数,也是一一映射函数,故为真命题;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2)为真,
可用反证法证明:假设f(x1)=f(x2),则按定义应有x1=x2,与已知中的x1≠x2矛盾;
④在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是,故为真.
故答案为:②③④.
| π |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
②指数函数f(x)=2x(x∈R)是单函数,因为指数函数f(x)=2x(x∈R)是实数上的单调函数,也是一一映射函数,故为真命题;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2)为真,
可用反证法证明:假设f(x1)=f(x2),则按定义应有x1=x2,与已知中的x1≠x2矛盾;
④在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是,故为真.
故答案为:②③④.
练习册系列答案
相关题目
若函数f(x)的定义域为[-1,2],则函数
的定义域为( )
| f(x+2) |
| x |
| A、[-1,0)∪(0,2] |
| B、[-3,0) |
| C、[1,4] |
| D、(0,2] |