题目内容
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料你是否认为“体育迷”与性别
有关?
|
|
非体育迷 |
体育迷 |
合计 |
|
男 |
|
|
|
|
女 |
|
|
|
|
合计 |
|
|
|
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
|
|
0.05 |
0.01 |
|
k |
3.841 |
6.635 |
附![]()
见解析
【解析】由频率分步直方图可知,在抽取的100人中,“体育迷”有25人,从而
列联表如下:
|
|
非体育迷 |
体育迷 |
合计 |
|
男 |
30 |
15 |
45 |
|
女 |
45 |
10 |
55 |
|
合计 |
75 |
25 |
100 |
将
列联表中的数据代入公式计算,
得![]()
因为
,所以我们没有理由认为“体育迷”与性别有关。
(2)由频率分步直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间为
其中
表示男性,![]()
表示女性,![]()
由10个基本事件组成,而且这些基本事件的出现是等可能的.
用A表示“任选2人中,至少有1人是女性”这一事件,则![]()
事件A由7个基本事件组成,因此![]()
考点定位:本大题主要考查生活中的概率统计知识和方法以及线性相关问题.第二问求概率关键是把 “从“超级体育迷”中任意选取2人”的所有情况找清楚
(2012年高考(辽宁文))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料你是否认为“体育迷”与性别
有关?
| 非体育迷 | 体育迷 | 合计 | |
| 男 | |||
| 女 | |||
| 合计 |
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。右图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
|
|
非体育迷 |
体育迷 |
合计 |
|
男 |
|
|
|
|
女 |
|
|
|
|
合计 |
|
|
|
(Ⅱ)将日均收看该体育项目不低于50 分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
![]()
![]()