题目内容

已知集合A={(x,y)|x2+mxy+2=0},B={(x,y)|xy+1=0,且0≤x≤2},如果AB,求实数m的取值范围.

所求m的取值范围是m≤-1


解析:

 得x2+(m-1)x+1=0       ①

AB

∴方程①在区间[0,2]上至少有一个实数解.

首先,由Δ=(m-1)2-4≥0,得m≥3或m≤-1,当m≥3时,由x1+x2=-(m-1)<0及x1x2=1>0知,方程①只有负根,不符合要求.

m≤-1时,由x1+x2=-(m-1)>0及x1x2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.

故所求m的取值范围是m≤-1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网