题目内容
9.“n>m>0”是方程“mx2+ny2=1表示焦点在x轴上的椭圆”的( )| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 方程“mx2+ny2=1表示焦点在x轴上的椭圆”?$\frac{1}{m}>\frac{1}{n}$>0?n>m>0.即可判断出结论.
解答 解:方程“mx2+ny2=1表示焦点在x轴上的椭圆”?$\frac{1}{m}>\frac{1}{n}$>0?n>m>0.
“n>m>0”是方程“mx2+ny2=1表示焦点在x轴上的椭圆”的充要条件.
故选:C.
点评 本题考查了椭圆的标准方程及其性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
17.
如图,某地区有四个公司分别位于矩形ABCD的四个顶点,且AB=1km,BC=2km,四个公司商量准备在矩形空地中规划一个三角形区域AMN种植花草,其中M,N分别在直线BC,CD上运动,∠MAN=30°,设∠BAM=α,当三角AMN的面积最小时,此时α=( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{5π}{12}$ |
4.已知变量x,y满足$\left\{{\begin{array}{l}{1≤x+y≤3}\\{-1≤x-y≤1}\end{array}}\right.$,若目标函数z=2x+y取到最大值a,则(x+$\frac{1}{x}$-2)a的展开式中x2的系数为( )
| A. | -144 | B. | -120 | C. | -80 | D. | -60 |
14.已知函数$f(x)=\sqrt{x}sinx$,则f'(π)=( )
| A. | $\sqrt{π}$ | B. | $\frac{{\sqrt{π}}}{2π}$ | C. | $-\sqrt{π}$ | D. | $\frac{{\sqrt{2π}}}{2π}$ |
19.已知函数f(x)=kx,g(x)=$\frac{lnx}{x}$,若关于x的方程f(x)=g(x),在区间[$\frac{1}{e}$,e]内有两个实数解,则实数k的取值范围是( )
| A. | [$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$) | B. | ($\frac{1}{2e}$,$\frac{1}{e}$] | C. | (0,$\frac{1}{{e}^{2}}$) | D. | ($\frac{1}{e}$,+∞) |