题目内容
在平面直角坐标系中,O为坐标原点,已知A(3,1),B(-1,3),若点C满足|
+
|=|
-
|,则C点的轨迹方程是( )
| AC |
| BC |
| AC |
| BC |
| A、x+2y-5=0 |
| B、2x-y=0 |
| C、(x-1)2+(y-2)2=5 |
| D、3x-2y-11=0 |
分析:由题设条件知C点的轨迹是以两个端点A、B为直径的圆,圆心坐标为线段AB的中点(1,2),半径等于
,由此可知C点的轨迹方程是(x-1)2+(y-2)2=5.
| 5 |
解答:解:由|
+
|=|
-
|,知
⊥
,
所以C点的轨迹是以两个端点A、B为直径的圆,
圆心坐标为线段AB的中点(1,2),半径等于
,
所以C点的轨迹方程是(x-1)2+(y-2)2=5.
故选C.
| AC |
| BC |
| AC |
| BC |
| AC |
| BC |
所以C点的轨迹是以两个端点A、B为直径的圆,
圆心坐标为线段AB的中点(1,2),半径等于
| 5 |
所以C点的轨迹方程是(x-1)2+(y-2)2=5.
故选C.
点评:本题考查圆的基本知识,解题时要认真审题,仔细解答.
练习册系列答案
相关题目