题目内容
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并证明数列{bn-1}是等比数列;
(2)若数列{cn}满足cn=
,证明:c1+c2+c3+…+cn<3.
(1)an=2n-1.,见解析(2)见解析
解析
练习册系列答案
相关题目
在
个实数组成的
行
列数表中,先将第一行的所有空格依次填上![]()
,
,![]()
![]()
,再将首项为
公比为
的数列
依次填入第一列的空格内,然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规律填写其它空格
| | 第1列 | 第2列 | 第3列 | 第4列 | | 第 |
| 第1行 | | |||||
| 第2行 | | | | | | |
| 第3行 | | | | | | |
| 第4行 | | | | | | |
| | | | | | | |
| 第 | | | | | |
(2)设第3行的数依次为
①求数列
②能否找到
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.
| | 第一列 | 第二列 | 第三列 |
| 第一行 | 3 | 2 | 10 |
| 第二行 | 6 | 4 | 14 |
| 第三行 | 9 | 8 | 18 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.