题目内容
设函数f(x)及其导函数f'(x)都是定义在R上的函数,则“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”是“?x∈R,|f'(x)|<1”的( )
| A.充分而不必要条件 | B.必要而不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |
由于f′(x)=
=
,故|f′(x)|=
.
由“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”,利用函数的导数的定义,可推出|f′(x)|<1,
故成分性成立.
再由“?x∈R,|f′(x)|<1”,可得“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”成立,
故必要性成立.
综上可得,“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”是“?x∈R,|f′(x)|<1”的充要条件,
故选C.
| lim |
| △x→0 |
| △y |
| △x |
| lim |
| (x2- x 1)→0 |
| f(x2)-f(x 1) |
| x2-x 1 |
| lim |
| (x2- x 1)→0 |
| |f(x2)-f(x 1)| |
| | x2-x 1| |
由“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”,利用函数的导数的定义,可推出|f′(x)|<1,
故成分性成立.
再由“?x∈R,|f′(x)|<1”,可得“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”成立,
故必要性成立.
综上可得,“?x1,x2∈R,且x1≠x2,|f(x1)-f(x2)|<|x1-x2|”是“?x∈R,|f′(x)|<1”的充要条件,
故选C.
练习册系列答案
相关题目