题目内容
已知数列an的前n项和为Sn,点(n,Sn)(n∈N*)在函数f(x)=3x2-2x的图象上,(1)求数列an的通项公式;
(2)设bn=
| 3 | an•an+1 |
分析:(1)由已知可得Sn=3n2-2n,利用 n≥2,an=Sn-Sn-1,a1=S1可得数列{an}的通项公式an=6n-5
(2)由(1)可得bn=
=
×(
-
)利用裂项求和求出数列的前n项和Tn
(2)由(1)可得bn=
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
解答:解:(1)由题意可知:Sn=3n2-2n
当n≥2,an=Sn-Sn-1=3n2-2n-3(n-1)2+2(n-1)=6n-5.(4分)
又因为a1=S1=1..(5分)
所以an=6n-5.(6分)
(2)bn=
=
=
(
-
)(8分)
所以Tn=
(1-
+
-
++
-
)=
(1-
)=
(12分)
当n≥2,an=Sn-Sn-1=3n2-2n-3(n-1)2+2(n-1)=6n-5.(4分)
又因为a1=S1=1..(5分)
所以an=6n-5.(6分)
(2)bn=
| 3 |
| anan+1 |
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
所以Tn=
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 13 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
| 1 |
| 2 |
| 1 |
| 6n+1) |
| 3n |
| 6n+1 |
点评:本题(1)通项公式的求解主要是运用递推公式an=
在运用改公式时要注意对n=1的检验
(2)考查数列求和的裂项求和,
=
•(
-
)易漏
.
|
(2)考查数列求和的裂项求和,
| 1 |
| n(n+k) |
| 1 |
| k |
| 1 |
| n |
| 1 |
| n+k |
| 1 |
| k |
练习册系列答案
相关题目