题目内容

抛物线过点M(2,-4),且以x轴为准线,此抛物线顶点的轨迹方程是( )
A.(x-2)2+(y+4)2=16
B.(x-2)2+4(y+2)2=16
C.(x-2)2-(y+4)2=16
D.4(x-2)2+4(y+4)2=16
【答案】分析:先判断抛物线在x轴的下方,设此抛物线顶点A的坐标(x,y),由抛物线的性质知焦点B(x,2y),再由抛物线的定义得出方程并化简.
解答:解:∵抛物线过点M(2,-4),且以x轴为准线,
∴抛物线在x轴的下方,
设此抛物线顶点A的坐标(x,y),
则由抛物线的性质知焦点B(x,2y),
再由抛物线的定义得:
=4,化简得 (x-2)2+4(y+2)2=16.
点评:本题考查利用曲线的定义求曲线的方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网