题目内容
设函数![]()
(1)解不等式
;
(2)若关于
的不等式
的解集不是空集,求
得取值范围.
(1)
;(2)
或
.
解析试题分析:本题考查绝对值不等式的解法和有解问题的求法,考查学生运用函数零点分类讨论的解题思想和转化思想.第一问,利用函数零点分成3类不等式组;第二问,是有解问题,将问题转化为
,本问的关键是求
,将函数
去掉绝对值,化成分段函数,通过数形结合求出
,即
,下面解绝对值不等式求出
的取值范围.
试题解析:(1)∵
,
∴
或
或
,
∴
或
或
,
∴
或
或
,
∴
或
. 5分
(2)因为
,
所以
,
所以若
的解集不是空集,则
,
解得:
或
,
即
的取值范围是:
或
. 10分
考点:1.绝对值不等式的解法;2.分段函数的最值;3.有解问题的解法.
练习册系列答案
相关题目