题目内容
(理科)已知各项均为正数的数列{an}的前n项和为Sn,且对任意正整数n,点(an,Sn)都在直线2x-y-
=0上.
(1)求数列{an}的通项公式;
(2)若an2=2 -bn设Cn=
求数列{Cn}前n项和Tn.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)若an2=2 -bn设Cn=
| bn |
| an |
因为点(an,Sn)都在直线2x-y-
=0,
所以2an-Sn-
=0,即2an=Sn+
,an>0,
当n=1时,2a1=a1+
,即a1=
.
当n≥2时,2an=Sn+
=0,2an-1=Sn-1+
,
两式相减得2an-2an-1=an,整理得:
=2,
所以数列{an}是
为首项,2为公比的等比数列.
所以an=
?2n-1=2n-2 …(5分)
(2)
=2-bn=22n-4,所以bn=4-2n,Cn=
=
=
,
所以Tn=
+
+…+
+
,①
Tn=
+…+
+
②
①-②得
Tn=4-8(
+
+…+
)-
=4-8
-
=4-4(1-
)-
=
,
所以Tn=
…(14分)
| 1 |
| 2 |
所以2an-Sn-
| 1 |
| 2 |
| 1 |
| 2 |
当n=1时,2a1=a1+
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,2an=Sn+
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得2an-2an-1=an,整理得:
| an |
| an-1 |
所以数列{an}是
| 1 |
| 2 |
所以an=
| 1 |
| 2 |
(2)
| a | 2n |
| bn |
| an |
| 4-2n |
| 2n-2 |
| 16-8n |
| 2n |
所以Tn=
| 8 |
| 2 |
| 0 |
| 22 |
| 24-8n |
| 2n-1 |
| 16-8n |
| 2n |
| 1 |
| 2 |
| 8 |
| 22 |
| 24-8n |
| 2n |
| 16-8n |
| 2n+1 |
①-②得
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 16-8n |
| 2n+1 |
| ||||
1-
|
| 16-8n |
| 2n+1 |
| 1 |
| 2n-1 |
| 16-8n |
| 2n+1 |
| 4n |
| 2n |
所以Tn=
| 8n |
| 2n |
练习册系列答案
相关题目