题目内容
用半径为R的圆铁皮剪一个内接矩形,再将内接矩形卷成一个圆柱(无底、无盖),问使矩形边长为多少时,其体积最大?分析:首先分析题目要求半径为R的圆铁皮剪一个内接矩形,将内接矩形卷成一个圆柱(无底、无盖),求其体积最大.故可以设矩形的两边x,y.然后列出方程.由几何关系x2+y2=4R2故有y=
.利用公式表示成圆柱体的体积,利用导数求最值即可.
| 4R2-x2 |
解答:解:可设矩形的两边x,y,由几何关系x2+y2=4R2故有y=
.,
则体积V=π×(
)2×
=
×
∴V′=
×(2x×
+
)
令V′=0得2x×
+
=0,整理得
=x,解得x=
R,此时另一边长为
R
即当x=
R时,体积取到最大值,最大值为V=
×
=
R3
即当长与宽都是
R时,此圆柱体体积取到最大值
R3
| 4R2-x2 |
则体积V=π×(
| x |
| 2π |
| 4R2-x2 |
| x 2 |
| 4π |
| 4R2-x2 |
∴V′=
| 1 |
| 4π |
| 4R2-x2 |
| x2×(-x) | ||
|
令V′=0得2x×
| 4R2-x2 |
| x2×(-x) | ||
|
| 4R2-x2 |
| 2 |
| 2 |
即当x=
| 2 |
| 2R 2 |
| 4π |
| 4R2-2R2 |
| ||
| 2 |
即当长与宽都是
| 2 |
| ||
| 2 |
点评:此题主要考查导数求最值在实际中的应用问题,由导数求最值在高考中属于重要考点,需要同学们理解记忆.
练习册系列答案
相关题目