题目内容
已知数组:(
),(
,
),(
,
,
),(
,
,
,
),…,(
,
,
,…,
,
),…. 记该数组为:(a1),(a2,a3),(a4,a5,a6),…,则a200=
.
| 1 |
| 1 |
| 1 |
| 2 |
| 2 |
| 1 |
| 1 |
| 3 |
| 2 |
| 2 |
| 3 |
| 1 |
| 1 |
| 4 |
| 2 |
| 3 |
| 3 |
| 2 |
| 4 |
| 1 |
| 1 |
| n |
| 2 |
| n-1 |
| 3 |
| n-2 |
| n-1 |
| 2 |
| n |
| 1 |
| 10 |
| 11 |
| 10 |
| 11 |
分析:首先确定,各数组中的首项由于下标分别为1,2,4,7,…,故第n个下标为
各数组个数和为
,故可知第20组首项为a191=
,从而可解.
| n2-n+2 |
| 2 |
| n(n+1) |
| 2 |
| 1 |
| 20 |
解答:解:首先确定,各数组中的首项由于下标分别为1,2,4,7,…,故第n个下标为
,
各数组个数和为
,故可知第20组首项为a191=
,
∴a200=
.
故答案为
.
| n2-n+2 |
| 2 |
各数组个数和为
| n(n+1) |
| 2 |
| 1 |
| 20 |
∴a200=
| 10 |
| 11 |
故答案为
| 10 |
| 11 |
点评:本题以数组为依托,考查数列知识,考查归纳推理,关键是得出各数组中的首项.
练习册系列答案
相关题目