题目内容

函数数学公式单调增区间是________,值域是________.

(1,4)    [-2,+∞]
分析:本题为复合函数的单调区间和值域问题,复合函数单调区间满足“同增异减”原则,而在(0,+∞)上是减函数,所以只需求t=-x2+2x+8的单调递减区间即可,又因为-x2+2x+8在真数位置,故需大于0;求值域时,先求t=-x2+2x+8的范围,再求的值域即可.
解答:由函数和t=-x2+2x+8复合而成,
在(0,+∞)上是减函数,
又因为-x2+2x+8在真数位置,
故需大于0,t=-x2+2x+8>0的单调递减区间为(1,4).
t=-x2+2x+8的值域为(0,9],,t∈(0,9]的值域为[-2,+∞).
故答案为:(1,4)(或[1,4));[-2,+∞).
点评:本题考查复合函数的单调区间和值域问题,复合函数单调区间满足“同增异减”原则,真数大于0在解题中不要忘掉.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网