题目内容
已知向量
=(4,5cosα),
=(3,-4tanα),α∈(0,
),
⊥
,求:
(1)|
+
|
(2)cos(α+
)的值.
| a |
| b |
| π |
| 2 |
| a |
| b |
(1)|
| a |
| b |
(2)cos(α+
| π |
| 4 |
∵
=(4,5cosα),
=(3,-4tanα),
⊥
,
∴12-20cosαtanα=12-20sinα=0,
∴sinα=
,又α∈(0,
),
∴cosα=
=
,tanα=
,
(1)∵
=(4,4),
=(3,-3),
∴
+
=(7,1),
则|
+
|=
=
=5
;
(2)∵sinα=
,cosα=
,
则cos(α+
)=cosαcos
-sinαsin
=
(
-
)=
.
| a |
| b |
| a |
| b |
∴12-20cosαtanα=12-20sinα=0,
∴sinα=
| 3 |
| 5 |
| π |
| 2 |
∴cosα=
| 1-sin2α |
| 4 |
| 5 |
| 3 |
| 4 |
(1)∵
| a |
| b |
∴
| a |
| b |
则|
| a |
| b |
| 72+12 |
| 50 |
| 2 |
(2)∵sinα=
| 3 |
| 5 |
| 4 |
| 5 |
则cos(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| 4 |
| 5 |
| 3 |
| 5 |
| ||
| 10 |
练习册系列答案
相关题目