题目内容
①不等式|
|≥1的解集是
②若数列{xn}满足lgxn+1=1+lgxn,且x1+x2+…+x100=100,则lg(x101+x102+…+x200)=
| x+1 | x-1 |
(0,1)∪(1,+∞)
(0,1)∪(1,+∞)
②若数列{xn}满足lgxn+1=1+lgxn,且x1+x2+…+x100=100,则lg(x101+x102+…+x200)=
102
102
.分析:①不等式|
|≥1?(x+1)2≥(x-1)2≠0,解得即可;
②由数列{xn}满足lgxn+1=1+lgxn,可得lgxn+1-lgxn=lg
=1,于是
=10,可得数列{xn}是等比数列,利用等比数列的性质即可得出.
| x+1 |
| x-1 |
②由数列{xn}满足lgxn+1=1+lgxn,可得lgxn+1-lgxn=lg
| xn+1 |
| xn |
| xn+1 |
| xn |
解答:解:①不等式|
|≥1?(x+1)2≥(x-1)2≠0,解得x>0且x≠1,
因此原不等式的解集是(0,1)∪(1,+∞);
②∵数列{xn}满足lgxn+1=1+lgxn,
∴lgxn+1-lgxn=lg
=1,∴
=10,
∴数列{xn}是以x1为首项,10为公比的等比数列,
∴x101+x102+…+x200=10100(x1+x2+…+x100)=10100×100=10102.
∴lg(x101+x102+…+x200)=lg10102=102.
故答案分别为(0,1)∪(1,+∞),102.
| x+1 |
| x-1 |
因此原不等式的解集是(0,1)∪(1,+∞);
②∵数列{xn}满足lgxn+1=1+lgxn,
∴lgxn+1-lgxn=lg
| xn+1 |
| xn |
| xn+1 |
| xn |
∴数列{xn}是以x1为首项,10为公比的等比数列,
∴x101+x102+…+x200=10100(x1+x2+…+x100)=10100×100=10102.
∴lg(x101+x102+…+x200)=lg10102=102.
故答案分别为(0,1)∪(1,+∞),102.
点评:熟练掌握含绝对值不等式的解法、对数的运算性质、等比数列的性质是解题的关键.
练习册系列答案
相关题目