题目内容
△ABC的三条边长BC=a,AC=b,AB=c,O为△ABC内一点,a
+b
+c
=
,则点O是△ABC的( )
| OA |
| OB |
| OC |
| 0 |
分析:先延长AO与BC相交于D,设
=t
,由条件得
=
(b
+c
),从而
=
+
,利用D,B,C三点共线,得出t=
,再代入
=
=
×
(b
+c
)中得到
=
,根据三角形内角平分线的性质定理可知,AD是角BAC的平分线,最终得出点O是△ABC的内心.
| OD |
| AO |
| AO |
| 1 |
| a |
| OB |
| OC |
| OD |
| tb |
| a |
| OB |
| tc |
| a |
| OC |
| a |
| b+c |
| OD |
| a |
| b+c |
| AO |
| a |
| b+c |
| 1 |
| a |
| OB |
| OC |
|
| ||
|
|
| c |
| b |
解答:
解:延长AO与BC相交于D,设
=t
,
∵a
+b
+c
=
,
∴
=
(b
+c
),
∴
=t ×
(b
+c
),
即
=
+
,
∵D,B,C三点共线,
∴
+
=1,∴t=
,
∴
=
=
×
(b
+c
)
即
=
+
,
也即b(
-
)=c(
-
),
⇒b
=c
⇒
=
,
根据三角形内角平分线的性质定理可知,AD是∠BAC的平分线,
同理可得BO是∠ABC的平分线,CO是∠ACB分线.
则点O是△ABC的内心.
故选C.
| OD |
| AO |
∵a
| OA |
| OB |
| OC |
| 0 |
∴
| AO |
| 1 |
| a |
| OB |
| OC |
∴
| OD |
| 1 |
| a |
| OB |
| OC |
即
| OD |
| tb |
| a |
| OB |
| tc |
| a |
| OC |
∵D,B,C三点共线,
∴
| tb |
| a |
| tc |
| a |
| a |
| b+c |
∴
| OD |
| a |
| b+c |
| AO |
| a |
| b+c |
| 1 |
| a |
| OB |
| OC |
即
| OD |
| b |
| b+c |
| OB |
| c |
| b+c |
| OC |
也即b(
| OD |
| OB |
| OC |
| OD |
⇒b
| BD |
| DC |
|
| ||
|
|
| c |
| b |
根据三角形内角平分线的性质定理可知,AD是∠BAC的平分线,
同理可得BO是∠ABC的平分线,CO是∠ACB分线.
则点O是△ABC的内心.
故选C.
点评:本小题主要考查三角形五心、向量的运算、三点共线等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目