题目内容
若△ABC的三条边长a=2,b=3,c=4,则2bccosA+2cacosB+2abcosC的值为分析:根据余弦定理分别求出cosA,cosB,cosC代入原式化简,再把a,b,c代入即可得到答案.
解答:解:根据余弦定理cosA=
,cosB=
,cosC=
∴2bccosA+2cacosB+2abcosC
=2bc
+2ca
+2ab
=a2+b2+c2
=4+9+16=29
故答案为:29
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
| b2+a2-c2 |
| 2ab |
∴2bccosA+2cacosB+2abcosC
=2bc
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
| b2+a2-c2 |
| 2ab |
=a2+b2+c2
=4+9+16=29
故答案为:29
点评:本题主要考查了余弦定理的应用.属基础题.
练习册系列答案
相关题目