题目内容

已知数列{an}中,an=2np+qn(p,q为常数)
(1)若p=q=1,求数列{an}的前n项和Sn
(2)若p=1,问常数q如何取值时,使数列{an}为等比数列?
(1)p=q=1时,an=2n+n-----------------------------------(2分)
∴Sn=(2+22+23+…+2n)+(1+2+3+…+n)=
2(1-2n)
1-2
+
n(n+1)
2
=2n+1-2+
n(n+1)
2
,----(7分)
(2)p=1时,an=2n+qn,---------------------------------------------(8分)
得a1=2+q,a2=4+2q,a3=8+3q,a4=16+4q-------------------------------------(9分)
若数列{an}为等比数列,则
a23
=a2•a4,-----------------------(11分)
即(8+3q)2=(4+2q)(16+4q),得q=0,--------------------------------------(13分)
此时an=2n,得{an}是以2为首项,2为公比的等比数列.
∴q=0---------------------------------------------(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网