题目内容
(本小题满分12分)在中,.
(1)求角的大小;
(2)若,,求.
(本小题满分12分)已知圆的圆心为,,半径为,圆与离心率的椭圆的其中一个公共点为,、分别是椭圆的左、右焦点.
(1)求圆的标准方程;
(2)若点的坐标为,试探究直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.
(12分)某人上午7:00乘汽车以v1千米/小时(30≤v1≤100)匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以v2千米/小时(4≤v2≤20)匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地.设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费P=100+3(5﹣x)+2(8﹣y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?
若,且x为第四象限的角,则tanx的值等于( )
A、 B、- C、 D、-
(本小题满分12分)已知椭圆经过点A(0,4),离心率为;
(1)求椭圆C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
数列,,,,,…;的一个通项公式是( )
A. B.
C. D.
已知,函数在上单调递减,则的取值范围是 .
数列的通项公式,其前项和为,则
A. B. C. D.
实数m是上的随机数,则关于x的方程有实根的概率为( )