题目内容
已知椭圆
的一个焦点为
,且离心率为
.
(1)求椭圆方程;
(2)斜率为
的直线
过点
,且与椭圆交于
两点,
为直线
上的一点,若△
为等边三角形,求直线
的方程.
(1)求椭圆方程;
(2)斜率为
(1)
;(2)直线
的方程为
,或
.
试题分析:本题主要考查椭圆的标准方程以及几何性质、直线与椭圆相交问题、韦达定理、两点间距离公式、直线的方程等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的标准方程中a,b,c的关系,焦点坐标,离心率列出方程组,解出a和b,从而得到椭圆的标准方程;第二问,点斜式设出直线方程,由于直线与椭圆交于A,B,则直线与椭圆方程联立消参得到关于x的方程,设出A,B点坐标,利用韦达定理,得到
(1)依题意有
可得
故椭圆方程为
(2)直线
联立方程组
消去
设
故
则
设
可得
直线
所以
当△
可得
解得
即直线
练习册系列答案
相关题目