题目内容

精英家教网如图,矩形的长AD=2
3
,宽AB=1,A,D两点分别在x,y轴的正半轴上移动,B,C两点在第一象限.求OB2最大值.
分析:过点B作BH⊥OA,垂足为H.设∠OAD=θ进而表示出∠BAH和OA,HB,AH,然后利用勾股定理求得OB的解析式,利用θ的范围确定OB2最大值.
解答:精英家教网解:过点B作BH⊥OA,垂足为H.
设∠OAD=θ,则∠BAH=
π
2

OA=2
3
cosθ
BH=sin(
π
2
-θ)=cosθ

AH=cos(
π
2
-θ)=sinθ

OB2=(2
3
cosθ+sinθ)2+cos2θ

=7+6cos2θ+2
3
sin2θ

=7+4
3
sin(2θ+
π
3
)

0<θ<
π
2
π
3
<2θ+
π
3
3

所以,当θ=
π
12
时,OB2取得最大值7+4
3
点评:本题主要考查了解三角形的实际应用.解题的关键是根据题意建立三角函数模型,借助三角函数的基本性质解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网