题目内容

精英家教网如图,在矩形ABCD中,AB=2,AD=1,E是CD的中点,以AE为折痕将△DAE向上折起,使D为D′,且平面D′AE⊥平面ABCE.
(Ⅰ)求证:AD′⊥EB;
(Ⅱ)求直线AC与平面ABD'所成角的正弦值.
分析:(Ⅰ)根据勾股定理可知AE⊥BE,然后根据面面垂直的性质定理可知BE⊥平面AED',而AD'?平面AED',最后根据线面垂直的性质可知AD'⊥BE;
(Ⅱ)设AC与BE相交于点F,作FG⊥BD',垂足为G,则FG⊥平面ABD',连接AG,则∠FAG是直线AC与平面ABD'所成的角,在Rt△AEF中,求出AF,在Rt△EBD'中,求出FG,最后在三角形FAG求出此角的正弦值即可.
解答:精英家教网解:(Ⅰ)在Rt△BCE中,BE=
BC2+CE2
=
2

在Rt△AD'E中,AE=
D′A2+D′E2
=
2

∵AB2=22=BE2+AE2
∴AE⊥BE.(2分)
∵平面AED'⊥平面ABCE,且交线为AE,
∴BE⊥平面AED'.(4分)
∵AD'?平面AED',
∴AD'⊥BE.(6分)
(Ⅱ)设AC与BE相交于点F,由(Ⅰ)知AD'⊥BE,
∵AD'⊥ED',
∴AD'⊥平面EBD',(8分)
∵AD'?平面AED',
∴平面ABD'⊥平面EBD',且交线为BD',
如图,作FG⊥BD',垂足为G,则FG⊥平面ABD',(10分)
连接AG,则∠FAG是直线AC与平面ABD'所成的角.(11分)
由平面几何的知识可知
EF
FB
=
EC
AB
=
1
2
,∴EF=
1
3
EB=
2
3

在Rt△AEF中,AF=
AE2+EF2
=
2+
2
9
=
2
5
3

在Rt△EBD'中,
FG
FB
=
D′E
D′B
,可求得FG=
2
6
9

sin∠FAG=
FG
AF
=
2
6
9
2
5
3
=
30
15
.(14分)
∴直线AC与平面ABD'所成的角的正弦值为
30
15
点评:本题主要考查线面垂直的性质,以及线面所成角的度量,同时考查空间想象能力,计算能力,转化与化归的思想,解题的关键是寻找线面所成角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网