题目内容
函数y=xcos2x在点(
,0)处的切线方程是( )
| π |
| 4 |
| A.4πx+16y-π2=0 | B.4πx-16y-π2=0 |
| C.4πx+8y-π2=0 | D.4πx-8y-π2=0 |
∵y′=cos2x-2xsin2x,
∴k=y′|x=
=-
,?L:y-0=-
(x-
),
整理得:4πx+8y-π2=0,
故选C.
∴k=y′|x=
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
| π |
| 4 |
整理得:4πx+8y-π2=0,
故选C.
练习册系列答案
相关题目
函数y=xcos2x在点(
,0)处的切线方程是( )
| π |
| 4 |
| A、4πx+16y-π2=0 |
| B、4πx-16y-π2=0 |
| C、4πx+8y-π2=0 |
| D、4πx-8y-π2=0 |