题目内容

13.若不等式f(x)≤0的解集为区间[a,b](a<b),那么称I=b-a为不等式f(x)≤0的解集长度,已知函数f(x)=mx2+(m2-m-2)x+2(1-m)(m>0).
(1)当m=3时,求不等式f(x)≤0的解集长度;
(2)若不等式f(x)≤0的解集长度不小于2,求实数m的取值范围.

分析 (1)当m=3时,解不等式f(x)=3x2+4x-4≤0,可得不等式f(x)≤0的解集长度;
(2)若不等式f(x)≤0的解集长度不小于2,$\frac{\sqrt{△}}{m}$=$\frac{{m}^{2}-m+2}{m}$=m+$\frac{2}{m}$-1≥2,解得实数m的取值范围.

解答 解:(1)当m=3时,解不等式f(x)=3x2+4x-4≤0得:
x∈[-2,$\frac{2}{3}$],
故不等式f(x)≤0的解集长度为$\frac{8}{3}$,
(2)∵函数f(x)=mx2+(m2-m-2)x+2(1-m)=0的△=(m2-m-2)2-8m(1-m)=(m2-m+2)2>0恒成立,
故若不等式f(x)≤0的解集长度不小于2,
则$\frac{\sqrt{△}}{m}$=$\frac{{m}^{2}-m+2}{m}$=m+$\frac{2}{m}$-1≥2,
解得:m∈(0,1)∪(2,+∞)

点评 本题考查的知识点是二次函数的图象和性质,根据韦达定理的推论2及解集长度的定义,得到解集长度=$\frac{\sqrt{△}}{\left|a\right|}$,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网