题目内容
如图5,
中,
点
在线段
上,且
,![]()
(Ⅰ)求
的长;
(Ⅱ)求
的面积.
|
解:(Ⅰ)因为
,所以
.······················ 2分
在
中,设
,
则由余弦定理可得
①························································ 5分
在
和
中,由余弦定理可得
,
.··········································································· 7分
因为
,
所以有
,所以3
=-6 ②
由①②可得
,即
.································································ 9分
(Ⅱ)由(Ⅰ)得
的面积为
,
所以
的面积为
.········································································· 12分
(注:也可以设
,所以
,用向量法解决;或者以
为
原点,
为
轴建立平面直角坐标系,用坐标法解答;或者过
作
平行线交
延长线于
,用正余弦定理解答.具体过程略)
练习册系列答案
相关题目